Dragon Leaves Station, Returns to Earth with Valuable Science

Astronaut Andrew Morgan monitored the SpaceX Dragon resupply ship's release
Astronaut Andrew Morgan monitored the SpaceX Dragon resupply ship’s release from the Canadarm2 robotic arm on Tuesday morning. Credit: @AstroDrewMorgan

SpaceX’s Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:50 p.m. (11:50 a.m. PDT), approximately 300 miles southwest of Long Beach, California, marking the end of the company’s 20th contracted cargo resupply mission to the International Space Station for NASA. The spacecraft returned more than 4,000 pounds of valuable scientific experiments and other cargo.

Some of the scientific investigations Dragon will return to Earth include:

Generating a nutritional meal

Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. BioNutrients demonstrates a technology that enables on-demand production of nutrients needed during long-duration space missions. Although designed for space, this system also could help provide nutrition for people in remote areas of our planet.

Toward printing human organs in space

Biological printing of the tiny, complex structures found inside human organs, such as capillaries, is difficult in Earth’s gravity. The BioFabrication Facility (BFF) attempts to take the first steps toward the printing of human organs and tissues in microgravity. The facility may also help maintain the health of crews on deep space exploration missions by producing food and personalized pharmaceuticals on demand.

Helping the heart

The Engineered Heart Tissues (EHTs) study looks at how human heart tissue functions in space. It uses unique 3D tissues made from heart cells derived from human induced Pluripotent Stem Cells (hiPSCs), essentially adult stem cells. Researchers expect significant differences in function, structure and gene expression between EHTs in microgravity and those on the ground. Understanding these differences could help them find ways to prevent or mitigate problematic changes on future long-duration missions.

Biofilm festival

Samples from the Space Biofilms investigation, which examines microbial species and their formation of biofilms, are returning on Dragon. Biofilms are collections of one or more types of microorganisms – including bacteria, fungi and protists – that grow on wet surfaces. Better control of biofilms may help maintain crewed spacecraft and protect the health and safety of crew members as well as help prevent the introduction of Earth-based microbes to planetary bodies on which humans land.

These are just a few of the hundreds of investigations providing opportunities for U.S. government agencies, private industry and academic and research institutions to conduct microgravity research that leads to new technologies, medical treatments and products that improve life on Earth. Conducting science aboard the orbiting laboratory will help us learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars.

For almost 20 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. As a global endeavor, 239 people from 19 countries have visited the unique microgravity laboratory that has hosted more than 2,800 research investigations from researchers in 108 countries.

Learn more about station activities by following the space station blog, @space_station and @ISS_Research on Twitter as well as the ISS Facebook and ISS Instagram accounts

About the author